Agenda

- HW Review: AP FRQ Packet 2010 #1,2
- CW/HW: AP FRQ Packet 2010 #3,4
- Return Chapter 10 Test 2?
- Embark on a new journey...

Sequences

Anton 11.1

Objectives

- Given a sequence in **closed** form, write out the terms
- Given a sequence in **expanded** form, write in closed form
- Given a sequence, determine if it converges/diverges

A **sequence** $\{a_n\}$ is a listing of values of a_n as *n* goes from 1 to ∞ .

$$\{a_n\} = a_1$$
 , a_2 , a_3 , ...

Ex:
$$\{2^n\} = \lambda^1, \lambda^2, \lambda^3, \cdots$$

Ex:
$$\left\{ \left(-1\right)^n \frac{x^n}{n!} \right\} = -\frac{\sqrt{1}}{1!} \cdot \frac{\chi^2}{\lambda!} \cdot -\frac{\chi^3}{3!} \cdot \cdots$$

Express in bracket notation:

$$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots$$
 $\left\{ \frac{\pi}{\pi + 1} \right\}$

$$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{10}$$

$$1,-3,5,-7,...$$

Limits of Sequences

The sequence
$$\{a_n\}$$
 $\stackrel{\longleftarrow}{\to} L$ if $\lim_{n\to\infty} a_n = L$

The sequence $\{a_n\}$ diverges if $\lim_{n\to\infty} a_n$ diverges.

Find the limit of the following sequences.

$$\left\{\frac{1}{n}\right\} \rightarrow 0 \qquad \lim_{n \to \infty} \frac{1}{n} = 0$$

$$\{n+1\} \rightarrow \text{DIVERS}$$
 $\lim_{n \rightarrow \infty} n+1 = \infty$

$$\left\{ \left(-1\right)^{n+1} \right\} = \left\{ \left(-1\right)^{n+1} \right\} = \left\{ \left(-1\right)^{n+1} \left\{ \left(-1\right)^{n+1} \right\} = DNE$$

$$\Rightarrow DIVERUS$$

Find the limit of the following sequences.

$$\left\{\frac{n}{n+1}\right\} \longrightarrow \left\{\frac{n}{n+1}\right\} \longrightarrow \left\{\frac{1}{n+1}\right\} \longrightarrow \left\{\frac{n}{2n+1}\right\} \longrightarrow \left\{\frac{n}{$$

Find the limit of the following sequences.

$$\left\{ \left(-1\right)^{n+1} \frac{n}{2n+1} \right\} \rightarrow \text{Diverses} \quad \text{positive terms can it is } 10^{-1} \leq n_0 \leq n_0$$

$$\left\{ \left(-1\right)^{n+1} \frac{1}{n} \right\} \rightarrow 0$$

$$\{8-2n\}$$

Some other examples:

$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{1}{2^2}$, $\frac{1}{3^2}$, $\frac{1}{2^3}$, $\frac{1}{3^3}$, ...

$$1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, \dots$$

Thrm: A sequence converges ⇔ even numbered terms converge to L and the odd numbered terms converge to *L*.

Find the limit of the following sequences.

$$\left\{\frac{n}{e^n}\right\} \to D \qquad \lim_{n \to \infty} \frac{n}{e^n} \to C$$

$$\begin{cases} \sqrt[n]{n} \rightarrow 1 \\ \text{lim } n^{1/n} \Rightarrow y = n^{1/n} \\ \text{lny} = \frac{1}{n} \text{lnn} \\ = \frac{\ln n}{n} \\ \approx \frac{1}{n} \Rightarrow \frac{1}{n} \rightarrow 0 \\ \text{lny} \rightarrow 0 \Rightarrow y > 0 \neq 1 \end{cases}$$

Recursive Sequences – an example

$$\{a_n\} \Rightarrow a_{n+1} = \frac{1}{2} \left(a_n + \frac{3}{a_n}\right) \qquad a_1 = 1$$

List out the first few terms:

Do you think the sequence converges?

 \rightarrow

Recursive Sequences – an example

$$\{a_n\} \Rightarrow a_{n+1} = \frac{1}{2} \left(a_n + \frac{3}{a_n}\right) \qquad a_1 = 1$$

This sequence will converge if: $\lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} a_n = L$

Homework:

FRQ Packet 2010 #3,4 Anton 11.1 #1 - 31 odd

Closure

Q: Given a sequence, how do you determine whether it converges or diverges?

A: Take a limit!

Q: What's the difference between a **sequence** and a **series**?

A: Stay tuned...